US009086899B2

a2 United States Patent
Wu et al.

US 9,086,899 B2
Jul. 21, 2015

(10) Patent No.:
(45) Date of Patent:

(54) LOADING AND DEBUGGING METHOD AND
DEBUGGING SYSTEM THEREOF
(75) Inventors: Xiaohui Wu, Shenzhen (CN); Haijian
He, Shenzhen (CN)
(73) ZTE CORPORATION, Shenzhen,
Guangdong Province (CN)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 89 days.

@
(22)

Appl. No.: 13/258,285

PCT Filed: Apr. 16, 2010

(86) PCT No.:

§371 (),
(2), (4) Date:

PCT/CN2010/071838

Apr. 10, 2012

(87) PCT Pub. No.: W02010/148724

PCT Pub. Date: Dec. 29,2010

Prior Publication Data

US 2012/0222010 A1 Aug. 30, 2012

(65)

(30) Foreign Application Priority Data

.......................... 2009 1 0221541

Nov. 20, 2009 (CN)
(51) Int.CL

GOGF 9/44

GOGF 9/45

GOGF 11/00
GOGF 9/445
GOGF 11/36

USS. CL

CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
............ GOGF 9/44521 (2013.01); GOGF 11/36

(2013.01); GOGF 11/362 (2013.01); GO6F
11/3624 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,659,753 A * 8/1997 Murphyetal. ... 717/147
5,836,014 A * 11/1998 Faiman, Jr. 717/156
6,918,111 B1* 7/2005 Damronetal. 717/161

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN

1841329 A 10/2006
101246427 A 8/2008

OTHER PUBLICATIONS

RealView Compilation Tools, Version 2.2, Compiler and Libraries
Guide, 2002-2005 ARM Limited, ARM DUI 0205F.*

(Continued)

Primary Examiner — Don Wong

Assistant Examiner — Mohammad Kabir

(74) Attorney, Agent, or Firm — Ling Wu; Stephen Yang;
Ling and Yang Intellectual Property

(57) ABSTRACT

A loading and debugging method and a debugging system
thereof are disclosed in the present invention, wherein the
debugging method includes: loading a relocatable program
according to an order of input segments in an ARM image file;
compiling a link of the loaded relocatable program to gener-
ate an executable file; and loading the executable file into a
debugging tool, to realize the debugging of the relocatable
program. The present invention achieves the debugging of a
dynamic program loaded dynamically, and addresses the
issue that the symbol information of the loaded relocatable
file cannot be acquired and the code debugging cannot be
performed directly when the relocatable file is loaded
dynamically.

2 Claims, 4 Drawing Sheets

" Anorderof input

T proy

segments during the relocatable
gram being loaded into a memory is
compared with an order of input segments

inan ARM image file to determine
whether they ure (he same .

No

L]

dynmicalty loeded relosaiable
toaded into the memory is modifie

The ordor of the input segments duting the

3

order of the input segmants of the ARM image file

f602
rogram being
according 1o the

relocatable ELF file is generated

The process of the ARM compiling the link is adjusted, and the
into an excentable ELF file by the
RM compiler and lnker

f603

Loading into the Trace32 for 04
debugging

US 9,086,899 B2

Page 2
(56) References Cited 2012/0047350 Al* 2/2012 Lancaster et al. 712/30
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
6,938,185 Bl : 8/2005 Beboutetal.ccccoovvane. 714/28 Liuzhichen, et al., Analysis and Application of ARM Mapping File
6,978,450 B2* 12/2005 Burc_h """ 717/145 Mechanism. Computer Engineering. Nov. 2005.
7,210,118 B2* 4/2007 Hastings 717/100 .
7.565.647 B2* 7/2009 Davidov et al . 717/140 International Search Report for PCT/CN2010/071838 dated Aug. 5,
7,661,102 B2* 2/2010 Ogle 717168 2010,
8,533,683 B2* 9/2013 Nash 717/128 . .
2002/0073398 Al* 6/2002 Tinkerccccoocrvevnne. 717/110 * cited by examiner

U.S. Patent

Nz
SxBOGo044
fadoaalutalninlodrgss
[ak anlaliulninkdei:]
QuOOBR0T3ce
TuRONonZRY
Q383053 3¢
=000 8’0
Tx00830a310
QaUDpo0494
[z niniuleic V-1
EeEtuinintelulntes]
CxOD00A0E"
Cu030RQQ3Y
OxrOGD00005Rs
GxGR00O049S
Quo000s10
QeGoNANs88
QuOGonOIszes
Qw00 L5588

Size
DR 3O000284
QOO0 5
Ox0GO0Za50
DGRl o
Ox QGO0 Sad
OxQQONNEES
OxQUON L5383
QxQOUO00%4%
QxQQOOGoza
3000005
QxQOOFO3I0
2xB00DO0 RS
[xFiulntatalatult=}
Dx30QoQGas
DxO0QQGGHR
rOOQQB0JG2
OxrOO00 1ad
GuORORONsEQ
et taininininint 33
QeOQDBBO0n44
QeOURnNI3e

Jul. 21, 2015

~ Altnbution .

Type (At ldx
Code RO 28E
Cods R 285
CRds R SEg
Tade Tz 203
Tode R 2G5
Codde RO 3G
Cnde RQ 333
Code RO 38
Dats RQ o7
Coade RO JRENESS
Code RO 309
Codde RO 310
Cogdes RO 31y
Code RO 31
Cade RO 313
DAt RQ 3318
Code piie] 317
Coveder psed 312
Dats "D 322

FIG.1

_ Attribution »
Type (At} tdx
poda e T3 B 2us
Tovlde R 257
Lode R 3601
Code R 3O
Cocds PO 3Qa
Cod B8O 31
Coda RO <3 =1
Coda RO 282
Cods RO 2N
Codea BO #iz
Cogia RO 311
Coda RO 10
Coadde RO 233
code RO 213
e EXEY B =
PAD

Dats RO 5
Data R Q
DT R 15
Diatm R 26
Datn RO 20

F1G.2

Sheet 1 of 4

Section Name

L. LEAQA TEeam
Ahenn

« Ent

I 4305

ARenre

i 1:-% 3 4

S #-378

LTEXT
SORSTadsta
STEXT

1, LRGerCurial

. LEMasckTcew

1. iR IaTeemBarked
1L LEGaTTtamByID
i.ommeel leig

L onRnanasna
LneRt

L hexRT
scangtdata

Scction Name

LhExt

LEENR

~hExt

.text

Lhext

s CEXT

Leext

1. LEAGATIRa

1. LEGeEtCur Sa l
PLLEGes ITtewBy LD
1. LETsIvemParked
i.LENsrxltem
P.TCSeuTinie
i.mmton lelid

L EDNSEASTR

spoostdsts
Soonatdats
. CORS L aRta
LCanstadnta
COoTStadats

US 9,086,899 B2

Object
W W WK v €3
K#**Wﬁto
&&f*vﬁtg
ﬁ***#ﬂ‘o
RRRCE® | o
REWEUN oy
ﬂﬁf?ﬂﬂ‘g
t%www*‘g
HEXEFTETE s
HETE R e
FEEFEEL ‘Q
FEFEEL -3
EEFEEX .
WEFETER . T3
WHFTIX "(:‘(
b2 - B4 Q'a
RRHTET 03
RREHEE NN e
EEFEEE o

Ohbject
ﬁﬁﬁﬁﬁﬁ_m
%s*ﬁ%*,a
TEBEERN)
ﬁ%***ﬂ,@
w@****,a
wwvwsw‘@
%WW@R*‘G
%#WW&R‘@
tﬁ?xttéa
'ﬁ'v““&‘ﬁﬁég
ﬁ"ﬂ'ﬁ"ﬂ’ﬂ*ﬂu
Wﬁw“ﬁ*.c
%ttﬁxw‘g
*twﬁﬁﬁ'g
AREEEE

ARERNE gy
EEE T TN
'ﬁ‘ﬁﬂﬂﬂf“_m
TRERKE gy

TRRE BN gy

U.S. Patent Jul. 21, 2015 Sheet 2 of 4 US 9,086,899 B2

517 ii(TestL@aderHadule\.ld b= NILL}
519 startﬁme = zBreTest ReadSysTineCnt{);
530 p?a]zm(},
:.‘?1‘ 3 e >y PN 1 ALY b Skl
F ata. Toad B 1T T ONB oo hoaeaNaeg T Tp e 8 (R m i S tomm Jnncods rior Tear
=" o .
\F"‘__‘-‘"‘F‘/
The path of the The value of ﬁ“” The value of
exerutable elf text address ro_base
{text “\ddn,ss}

FiG. 3

An order of input segments during the relocstable féﬂ)l
program being loaded into a memory is compared
with thdt in an ARM image file

The order of the input segments during the J""40'2
dynamically loaded relocatable program
cing loaded into the memory is modified

The process of ARM compiling the hiak is adjusted, and f 403
the relocatable ELF file can be gencrated into an
execntable BLF file by an ARM compiler and linker

F1G. 4

U.S. Patent Jul. 21, 2015 Sheet 3 of 4

An order of input segments during the relocatable

with that in an ARM image file

The order of the input seaments during the {‘”50
dynamically loaded relocatable program
being loaded into the memory is modified

program being loaded info a memory is compared |/

US 9,086,899 B2

(’S 01

The process of ARM compiling the link is adjusted, and
the relocatable ELF file is generated into an executable
ELF file by an ARM compiler and linker

be debugged

F1G. 5

The generated ELT file 18 loaded mto a Trace32 1o J

504

U.S. Patent Jul. 21, 2015 Sheet 4 of 4

601
An arder of input
segmenis during the relocatable
program being loaded into a memory is
compared with an order of input segments
in an ARM image file to determine
T whether they are the same

No

\

The order of the input segments during the
dynamically loaded relocatable program being

loaded into the memory is moditied according to the
order of the input segments of the ARM image file

US 9,086,899 B2

Yes

f‘ﬁ(}

2

s

ARM compiler and Hoker

The process of the ARM compiling the link is adjusted, and the
refocatable ELF file is generated into an executable ELF file by the

debugging

FIG.6

504
Loading into the Trace32 for f_(

US 9,086,899 B2

1
LOADING AND DEBUGGING METHOD AND
DEBUGGING SYSTEM THEREOF

TECHNICAL FIELD

The present invention relates to the communication field,
and in particular, to a loading and debugging method and a
debugging system thereof in an embedded system.

BACKGROUND OF THE RELATED ART

With the development of science and technology, people’s
demand for mobile phones presents a trend of Personal Com-
puter (PC), and the required application programs are increas-
ing. At present, the dynamic loading technology is basically
realized in smart phones, which is similar to the dynamic link
library for Windows or the dynamic shared file for Linux on
the PC, and can load applications dynamically; while the
dynamic loading technology has not been implemented in
most non-smart phones yet. Since the dynamic loading tech-
nology can not only improve the efficiency of the software
development and load on demand to save hardware resources,
but also meets the requirements for telecom operators to
continuously extend the additional value-added services and
for the mobile phone users to download and use new functions
at any time; therefore implementing the dynamic loading
technology in non-smart phones is an inevitable trend for the
development of the non-smart phones. Accordingly, a debug-
ging method which complements the technology also
becomes an important factor to determine the technical and
practical values of the technology.

The existing debugging methods for embedded systems
are roughly divided into three modes: debugging through
designing resident monitoring software, Joint Test Action
Group (JTAG) debuggers and employing online debuggers,
wherein employing a JTAG debugger is the most commonly
used debugging mode during the development. At present, the
existing debugging methods are all based on these three
modes, to modify the implementation, monitor concerned
debugging information in the debugging process and output
the debugging information by means of facilitating under-
standing. Furthermore, all these debugging methods are used
to debug the compiled and linked executable object codes, but
have not involved a method for debugging relocatable object
codes and debugging dynamically loaded relocatable pro-
grams.

There are a plurality of formats for relocatable files, such as
the Portable Executable (PE) format of Microsoft, the
Executable and Linkable Format (ELF) of Unix/Linux. The
dynamically loaded relocatable files adopt link views in an
ELF format, and therefore the debugging method of the relo-
catable files is also for the relocatable files in an ELF format.
However, the existing debugging tools can not directly load
the relocatable files for debugging.

SUMMARY OF THE INVENTION

The technical problem to be solved in the present invention
is to provide a loading method, so that a debugging tool can
directly load an executable file generated from a relocatable
file by particular means, to debug a relocatable program.

In order to address the aforementioned problem, the
present invention provides a loading method, which is applied
to an Advanced RISC Machine (ARM) compiler system,
comprising:

loading a relocatable program according to an order of
input segments in an ARM image file; and

10

30

40

45

55

65

2

compiling and linking the loaded relocatable program to
generate an executable file,

s0 as to realize loading of the relocatable program.

The step of loading a relocatable program according to an
order of input segments in an ARM image file comprises:

comparing an order of the input segments during the relo-
catable program being loaded into a memory with the order of
the input segments in the ARM image file to determine
whether they are the same; and if they are the same, directly
loading loadable sections in the relocatable program into the
memory; otherwise, loading the loadable sections in the relo-
catable program into the memory according to the order of the
input segments in the ARM image file.

Before the comparison step, the method further comprises:
viewing the order of the input segments during the relocatable
program being loaded into the memory by the following
mode:

when segment classification based on the section types is
carried out during the relocatable program being loaded into
the memory, viewing a classification order of the sections by
adding print information or by a debugging tool.

The step of compiling a link of the loaded relocatable
program to generate an executable file comprises:

modifying setting of linking process parameters of an
ARM compiler and linker; and

utilizing the ARM compiler and linker to compile a link of
the loaded relocatable program, so as to generate an Execut-
able and Linkable Format (ELF) file.

The step of modifying setting of the linking process param-
eters of an ARM compiler and linker comprises:

setting an option of not scanning a C library in the ARM
compiler and linker, for not scanning a C/C++ runtime library
during the linking.

setting an option of an undefined symbol, for directing all
of the undefined symbols to the same existing symbol;

setting an option of not removing, for reserving all seg-
ments during the linking; and

setting an entry of the generated image file, setting an
address value when an output segment with an output seg-
ment property being read-only is loaded, and setting an
address value when the output segment with the output seg-
ment property being rewritable is loaded.

The existing symbol is a default startup interface name of
the relocatable program, or any existing symbol in the relo-
catable program.

Another technical problem to be solved by the present
invention is to provide a debugging method and system,
which can facilitate implementing debugging of a dynami-
cally loaded relocatable program.

In order to solve the above problem, the present invention
provides a debugging method, which is applied to an
Advanced RISC Machine (ARM) compiler system, compris-
ing:

loading a relocatable program according to an order of
input segments in an ARM image file;

compiling a link of the loaded relocatable program to gen-
erate an executable file; and

loading the executable file into a debugging tool, to realize
debugging of the relocatable program.

The step of compiling a link of the loaded relocatable
program to generate an executable file comprises:

modifying setting of linking process parameters of the
ARM compiler and linker; and

utilizing the ARM compiler and linker to compile a link of
the loaded relocatable program, so as to generate an execut-
able ELF file.

US 9,086,899 B2

3

The step of modifying setting of linking process param-
eters of the ARM compiler and linker comprises:

setting an option of not scanning in the ARM compiler and
linker, for not scanning a C/C++ runtime library during the
linking;

setting an option of an undefined symbol, for directing all
of the undefined symbols to the same existing symbol;

setting an option of not removing, for reserving all seg-
ments during the linking; and

setting an entry of the generated image file, setting an
address value ro_base when an output segment with an output
segment property being read-only is loaded, and setting an
address value rw_base when the output segment with the
output segment property being rewritable is loaded.

The value of ro_base is set as an actual loaded address of a
text segment of the relocatable program loaded into the
memory, or as a default value; and

when an actual loaded address of a data segment is differ-
ent from an address of an executable data segment of the
executable file, the value of rw_base is set as the actual loaded
address of the data segment of the relocatable program loaded
into the memory.

The step of loading the executable file into a debugging tool
specifically comprises:

loading the loaded relocatable program into the memory, to
determine the actual loaded address of the relocatable pro-
gram, including the actual loaded address of the text segment
and the actual loaded address of the data segment;

loading the executable file into the debugging tool after the
loaded address where the executable file is loaded into the
debugging tool is determined according to the following
mode: the loaded address of the data segment of the execut-
able file being the value of rw_base; and when the value of
ro_base is set as a default value, or as the actual loaded
address of'the text segment, a loaded offset address of the text
segment of the executable file is the actual loaded address of
the text segment minus the value of ro_base.

The present invention further provides a debugging sys-
tem, comprising a loading device, a link compiling device,
and a debugging tool, wherein,

the loading device is configured to load a relocatable pro-
gram according to an order of input segments in an Advanced
RISC Machine (ARM) image file;

the link compiling device is configured to compile a link of
the loaded relocatable program to generate an executable file;
and

the debugging tool is configured to load the executable file,
to realize debugging of the relocatable program,

so as to support the debugging of the relocatable program.

The link compiling device is an ARM compiler and linker,
and the ARM compiler and linker configures linking process
parameters by the following mode:

an option of not scanning the C library, for not scanning a
C/C++ runtime library during the linking;

an option of an undefined symbol, for directing all of the
undefined symbols to the same existing symbol;

an option of not removing, for reserving all segments dur-
ing the linking; and

an entry of the generated image file, an address value
ro_base when an output segment with an output segment
property being read-only is loaded, and an address value
rw_base when the output segment with the output segment
property being rewritable is loaded.

In summary, the present invention provides a method for
loading and debugging a dynamically loaded relocatable file
in an embedded system, which at least has the following
beneficial effects:

25

40

45

4

the research of a method for debugging a dynamically
loaded relocatable file is carried out, and the issue that the
symbol information of the loaded relocatable file cannot be
acquired and the code debugging cannot be performed
directly when the relocatable file is loaded dynamically, is
addressed; and

the debugging of a dynamic program loaded dynamically
is realized, the development requirement is met, and the inde-
pendent development and compiling of applications and a
platform are achieved; only the modified program loaded
dynamically is needed to be compiled, and copied into a file
system to be reloaded during the debugging without refabri-
cating and burning the platform version, so that a lot of time
is saved, and the effort is mainly expended on debugging
applications themself, thus greatly improving the efficiency
of application development, and laying the solid application
foundation for the implementation of the dynamic loading
technology by loading the relocatable file.

BRIEF DESCRIPTION OF DRAWINGS

From the following detailed description in combination
with accompanying drawings, the reasons, methods, features
and advantages for the implementation of each step of the
present invention will be understood more clearly, wherein,

FIG. 1 is a diagram of an order of input segments of a
dynamically loaded image file in the related art;

FIG. 2 is a diagram of an order of input segments of an
executable file generated by ARM compiling the link;

FIG. 3 is a diagram of a loading process of using a Trace32
debugging tool in accordance with an application embodi-
ment of the present invention;

FIG. 4 is a flow chart of a method for implementing loading
adynamically loaded relocatable program in accordance with
an embodiment of the present invention;

FIG. 5 is a flow chart of a method for debugging a dynami-
cally loaded relocatable program in accordance with an
embodiment of the present invention; and

FIG. 6 is a flow chart of loading and debugging a relocat-
able program in accordance with an embodiment of the
present invention.

PREFERRED EMBODIMENTS OF THE
PRESENT INVENTION

The core idea of the present invention is: firstly loading a
relocatable program into a memory according to an order of
input segments in an Advanced RISC Machine (ARM) image
file, secondly compiling the link of the relocatable program
by an ARM compiler and linker to generate an executable file,
and loading the executable file into a debugging tool to
acquire symbol information of the relocatable program, so as
to realize loading and debugging the dynamically loaded
relocatable program.

Since the process of loading the relocatable program
dynamically is a process that “text segment”, “data segment”
and “Block Started by Symbol (bss) segment” are extracted
from the relocatable program to be loaded into the memory
and then are linked, a symbol table of the loaded relocatable
file is invisible, and the dynamic program cannot be debugged
intuitively. Therefore, it is needed to make the relocatable file
be generated into an executable file, in order to be loaded into
the debugging tool to acquire the symbol information thereof.

In addition, as the link process of a simplified version of a
linker implemented by the dynamically loaded relocatable
program is different from that of the ARM compiler and
linker, it will lead to not being able to carry out the debugging

US 9,086,899 B2

5

correctly in the condition that the symbol information is
inconsistent with the actual address of the text, even if there is
symbol information. Therefore, the process of the dynamic
loading is needed to be modified.

Based on the aforementioned idea, the method for imple-
menting loading a dynamically loaded relocatable program in
accordance with the present invention mainly comprises the
following steps.

In step 401, an order of input segments during the relocat-
able program being loaded into the memory is compared with
that in an ARM image file.

In step 402, the order of the input segments during the
dynamically loaded relocatable program being loaded into
the memory is modified;

In step 403, the process of ARM compiling the link is
adjusted, and the relocatable ELF file is generated into an
executable ELF file by an ARM compiler and linker.

After the above loading process, the generated ELF file is
loaded into a Trace32, a symbol table of the relocatable pro-
gram is visible in the Trace32 and the debugging can be
carried out correctly.

Based on the aforementioned loading method, the present
invention provides a method for debugging a dynamically
loaded relocatable program, which mainly comprises the fol-
lowing steps.

In step 501, an order of input segments during the relocat-
able program being loaded into a memory is compared with
that in an ARM image file.

In step 502, the order of the input segments during the
dynamically loaded relocatable program being loaded into
the memory is modified.

In step 503, the process of ARM compiling the link is
adjusted, and the relocatable ELF file is generated into an
executable ELF file by an ARM compiler and linker.

In step 504, the generated ELF file is loaded into a Trace32
to be debugged.

Thus, by comparing the link process of a simplified version
of a linker implemented by the dynamically loaded relocat-
able program with that of the ARM compiler and linker, the
present invention analyzes their differences, modifies respec-
tive linking process parameter to guarantee the consistency
between their linking processes; and then uses the ARM
compiler and linker to set the specific linking parameters
thereof and link the relocatable program into an executable
ELF file, so that the ELF file can be loaded into the Trace32,
thus implementing the debugging of the relocatable program
correctly.

The implementation process of the technical scheme in
accordance with the present invention will be illustrated in
further detail in combination with the accompanying draw-
ings and specific embodiments in the following.

As shown in FIG. 1, in the related art, an order of input
segments in a dynamically loaded image file is: “text seg-
ment”, “data segment” and “bss segment”. Wherein, . LEAd-
dItem, i.LEMarkItem and so on are all the text segments.

It can be known from an order rule of the input segments in
the ARM image file that, the input segments are sorted
according to properties of the input segments, i.e., being
ordered according to read-only text segments, read-only data
segments, rewritable data segments, other initialized data
segments and block started by symbol data segments, and the
input segments with the same property are sorted according to
the American Standard Code for Information Interchange
(ASCII) order of the input segment name.

Therefore, in order to guarantee that the order the input
segments between the image file loaded dynamically into the
memory is the same order as that of an executable file into

5

10

15

20

25

30

35

40

45

50

55

60

65

6

which an ARM compiler and linker makes the relocatable file
to be generated, in the preferable embodiment of the present
invention, sections which can be loaded are loaded into the
memory according to the same order during the implementa-
tion of dynamic loading, and the order of the input segments
of'the executable file generated by ARM compiling the link is
as shown in FIG. 2. Thus, the problem of the inconsistency
between the symbol information of the dynamically loaded
program and the actual codes can be solved.

In addition, as the optimization function of the ARM com-
piler and linker will remove repeated text segments and
unused segments, while the dynamic loading only imple-
ments a simple linker, and does not have a removing function,
it is needed to set some link properties of ARM and not
remove these segments during the linking, so as to ensure that
the symbol information of the dynamically loaded program is
consistent with the actual debugging codes.

In the present embodiment, after performing the above
modification on the dynamic loading process, the relocatable
file is generated into an executable file using the ARM com-
piler and linker by the following means: since the file is a
relocatable file, and directly linking and generating an execut-
able file will fail due to a part of undefined symbols; controls
need to be performed through options such as --no_scan-
lib, --unresolved and so on, so that a C/C++ runtime library is
not scanned during the linking thereof, and all of the unde-
fined symbols are directed to the same existing symbol. In
addition, an initial entry thereof needs to be specified through
the --entry, and an addresses when an output segment with a
RO property is loaded and an address when an output segment
with a RW property is loaded needs to be specified through
the --ro_base and --rw_base. Thus, the relocatable file can be
linked and be generated into an executable file successfully,
and the loaded address thereof is consistent with a loaded
address during the dynamic loading.

The loading and debugging processes of a relocatable pro-
gram in accordance with the present embodiment will be
illustrated in further detail in the following. The process com-
prises the following steps.

In step 601, an order of input segments during the relocat-
able program being loaded into a memory is compared with
an order of input segments in an ARM image file to determine
whether they are the same; and if they are the same, skip to
step 603, otherwise, proceed to step 602.

Specifically, when the segment classification based on the
section types (that is, there are three segments, i.e., “text
segment”, “data segment” and “bss segment”, and each seg-
ment comprises a plurality of sections) is carried out during
the dynamic loading, a classification order of the sections is
viewed by adding print information or by a debugging tool.
Especially whether the sections of the text segment are sorted
according to an order of read-only text segments and read-
only data segments is viewed. Whether the read-only text
segments are sorted according to an order of the ASCII codes
of the section names, and whether the read-only data seg-
ments are sorted according to an order of constdata and const-
string. Finally, the sections of the data segment and the bss
segment are sorted.

In step 602, the order of the input segments during the
dynamically loaded relocatable program being loaded into
the memory is modified according to the order of the input
segments of the ARM image file, and proceed to step 603.

The order of the input segments during the dynamically
loaded relocatable program being loaded into the memory is
modified, so as to ensure that the segments loaded into the
memory are sorted according to an order of read-only text
segments, read-only data segments, rewritable data segments,

US 9,086,899 B2

7

other initiated data segments and block started by symbol data
segments; the input segments with the same property further
need to be sorted according to an order of the ASCII codes of
the input segment names, and at last the input segments are
loaded into the memory in the sorted order. After the order of
the input segments loaded into the memory is modified
according to the order, it is basically guaranteed that the code
loaded into the memory is consistent with the code actually
loaded into the debugging tool; however, if the completely
consistent effect is desired to be achieved, the operation
described in the third step is needed to be taken.

In step 603, the process of the ARM compiling the link is
adjusted, and the relocatable ELF file is generated into an
executable ELF file by the ARM compiler and linker.

Since there are a part of undefined symbols in the relocat-
able ELF file, some special linking options are required to be
added to guarantee that the relocatable ELF file is linked
correctly to be generated into the executable file.

Atfirst, an option of --no_scanlib (not scanning a C library)
is added, so that a default C/C++ runtime library is not
scanned to parse referenced symbols in each target file. In
addition, an option of --unresolved symbol (undefined sym-
bol) is added to make all the undefined symbols be directed to
the same existing symbol. The symbol can be set by users
themselves, as long as it is a defined symbol in the relocatable
file. In general, the existing relocatable program (the dynamic
program) each has a default start-up interface, and therefore,
preferably, the symbol can be specified as a name of the
default startup interface.

Secondly, an option of --no_remove (not removing) is
added, so that the ARM linker reserves all segments rather
than removing unused segments during the linking. Its pur-
poseisto keep the consistency with the input segments loaded
into the memory dynamically, because the simple linker
implemented during the dynamic loading is unable to identify
the unused segments temporarily, and does not remove the
unused segments as well.

At last, an entry of the generated the image file, an address
of the output segments with the RO (read-only) property is
loaded, and an address of the output segments with the
RW (rewritable) property is loaded, i.e., the options of
entry, --ro_base and --rw_base need to be set. Wherein, --ro_
base can be manually set as a loaded address of an actual text
segment of the relocatable program loaded into the memory;
alternatively, --ro_base can also not be set, and a default value
is 0x8000. While the property of --rw_base must be manually
set when a loaded address of an actual data segment is incon-
sistent with an address of an executable data segment of the
generated ELF, and a value of --rw_base is set as the loaded
address of the actual data segment of the relocatable program
loaded into the memory, so as to guarantee that the data value
of the data segment is correct.

After the above settings, the relocatable ELF file can be
generated into a corresponding executable ELF file used for
Trace32 for debugging, by the ARM compiler and linker. The
specific operation method of the debugging is as shown in the
fourth step.

In the fourth step, the executable ELF file is loaded into the
Trace32 to be debugged.

After being loaded into the memory, the dynamically
loaded relocatable program can be debugged.

Firstly, an actual loaded address of the relocatable program
actually loaded into the memory is required to be determined,
including loaded address values of the text segment and the
data segment.

Secondly, the executable ELF file generated in the third
step is loaded by the Trace32, and it should be noted that,

20

30

40

45

65

8

when avalue ofro_base is the actual loaded address of the text
segment, the loaded address is said actual loaded address of
the text segment, and the loaded offset address value is 0;
when ro_base is a default value, as shown in FIG. 3, in order
to make the loaded address be the loaded address of the actual
text segment (textAddress), the loaded offset address value
equal to the actual loaded address minus the value of ro_base.
Being loaded in this manner, no matter how to set ro_base, it
can be ensured that the executable ELF file is properly loaded
atthe actual loaded address of the text segment via the offset.
While a loaded address value of the data segment is the value
of rw_base.

At last, after being successfully loaded according to the
above steps, the symbol information of the relocatable
dynamically loaded program can be acquired to be debugged.

In addition, in the embodiment of the present invention, a
debugging system of a relocatable program is provided, and
the system comprises a loading device, a link compiling
device and a debugging tool.

Wherein, the loading device is configured to load the relo-
catable program according to an order of input segments in an
ARM image file.

The link compiling device is configured to compile a link
of the loaded relocatable program to generate an executable
file.

The debugging device is configured to load the executable
file, so as to realize the debugging of the relocatable program.

Wherein, the link compiling device is an ARM compiler
and linker, and linking process parameters of the ARM com-
piler and linker are modified as follows.

An option of not scanning is set in the ARM compiler and
linker, which is used for not scanning a C/C++ runtime library
during the linking.

An option of undefined symbol is set, which is used for
directing all the undefined symbols to the same existing sym-
bol.

An option of not removing is set, which is used for reserv-
ing all segments during the linking.

An entry of the generated image file, an address value
ro_base when the output segment with an output segment
property being read-only is loaded, an address value rw_base
when the output segment with output segment property being
rewritable is loaded are set.

The above description is only the preferred embodiments
of the present invention, and is not intended to limit the
protection scope of the present invention. The present inven-
tion can have a plurality of other embodiments. For those
skilled in the art, corresponding equivalent variations and
alternatives can be made according to the technical scheme
and the concept of the present invention without departing
from the spirit and substance of the present invention, and all
these corresponding variations and alternatives should belong
to the protection scope of appended claims of the present
invention.

INDUSTRIAL APPLICABILITY

The present invention realizes the debugging of a dynamic
program loaded dynamically is realized, the development
requirement is met, and the independent development and
compiling of applications and a platform are achieved; only
the modified program loaded dynamically is needed to be
compiled, and copied into a file system to be reloaded during
the debugging without refabricating and burning the platform
version, so that a lot of time is saved, and the effort is mainly
expended on debugging applications themself, thus greatly
improving the efficiency of application development, and

US 9,086,899 B2

9

laying the solid application foundation for the implementa-
tion of the dynamic loading technology by loading the relo-
catable file.
What we claim is:
1. A debugging method, wherein, the method is applied to
an Advanced RISC Machine (ARM) compiler system, the
method comprises:
comparing a sequence of input segments during a process
of'loading a relocatable program into a memory with a
sequence of input segments in an ARM image file;

when the sequence of the input segments during a process
of loading the relocatable program into a memory and
the sequence of the input segments in the ARM image
file are the same, directly loading the loadable sections
in the relocatable program into the memory; when the
sequence of the input segments during a process of load-
ing the relocatable program into a memory and the
sequence of the input segments in the ARM image file
are different, modifying the sequence of the input seg-
ments during the process of loading the relocatable pro-
gram into the memory according to the sequence of the
input segments of the ARM image file;

modifying a linking process parameters setting of an ARM

compiler and linker and then compiling and linking the
loaded relocatable program by using the ARM compiler
and linker to generate an executable file, wherein modi-
fying the linking process parameters setting of the ARM
compiler and linker comprises:

setting a not scanning option in the ARM compiler and

linker, for not scanning C/C++ runtime libraries during a
linking;

setting an undefined symbol option, for directing all unde-

fined symbols to a same existing symbol;

setting a no removing option, for reserving all segments

during the linking; and
setting an entry of a generated image file, setting an address
value ro_base as a loaded address of an output segment
that has a read-only attribute, and setting an address
value rw_base as a loaded address of an output segment
that has a read-write attribute;
wherein, the value of ro_base is set either as an actual
loaded address of a text segment of the relocatable pro-
gram loaded into the memory or as a default value;

when an actual loaded address of a data segment is differ-
ent from an address of an executable data segment of the
executable file, the value of rw_base is set as the actual
loaded address of the data segment of the relocatable
program loaded into the memory;
loading the executable file into a debugging tool, to realize
debugging of the relocatable program, wherein loading
the executable file into the debugging tool comprises:

loading the relocatable program into the memory, and
determining actual loaded addresses of the relocatable
program, including an actual loaded address of a text
segment and the actual loaded address of the data seg-
ment;

loading the executable file into the debugging tool after a

loading address for the executable file to be loaded into
the debugging tool is determined according to the fol-
lowing mode:

the loading address of a data segment of the executable file

being the value of rw_base, when the value of ro_base
was set as default value, or as the actual loaded address
of the text segment, the value of a loaded offset address
of the text segment of the executable file is the actual
loaded address of the text segment minus the value of
ro_base.

10

25

30

40

45

10

2. A debugging system, comprising at least one processor

executing a loading device, a link compiling device, and a
debugging tool, wherein,

the loading device is configured to compare a sequence of
input segments during a process of loading a relocatable
program into a memory with a sequence of input seg-
ments in an ARM image file;

when the sequence of the input segments during a process
of loading the relocatable Program into a memory and
the sequence of the input segments in the ARM image
file are the same, directly loading loadable sections in
the relocatable program into the memory; when the
sequence of the input segments during a process of load-
ing the relocatable program into a memory and the
sequence of the input segments in the ARM image file
are different, modifying the sequence of the input seg-
ments during the process of loading the relocatable pro-
gram into the memory according to the sequence of the
input segments of the ARM image file;

the link compiling device is configured to modify a linking
process parameters setting of an ARM compiler and
linker and then compiling and linking the loaded relo-
catable program by using the ARM compiler and linker
to generate an executable file, wherein modifying the
linking process parameters setting of the ARM compiler
and linker comprises:

setting a not scanning option in the ARM compiler and
linker, for not scanning C/C++ runtime libraries during a
linking;

setting an undefined symbol option, for directing all unde-
fined symbols to a same existing symbol;

setting a no removing option, for reserving all segments
during the linking; and

setting an entry of a generated image file, setting an address
value ro_base as a loaded address of an output segment
that has a read-only attribute, and setting an address
value rw_base as a loaded address of an output segment
that has a read-write attribute;

wherein, the value of ro_base is set either as an actual
loaded address of a text segment of the relocatable pro-
gram loaded into the memory or as a default value;

when an actual loaded address of a data segment is differ-
ent from an address of an executable data segment of the
executable file, the value of rw_base is set as the actual
loaded address of the data segment of the relocatable
program loaded into the memory;

the debugging tool is configured to load the executable file
to realize debugging ofthe relocatable program, wherein
loading the executable file comprises:

loading the relocatable program into the memory, and
determining actual loaded addresses of the relocatable
program, including an actual loaded address of a text
segment and the actual loaded address of the data seg-
ment;

loading the executable file into the debugging tool after a
loading address for the executable file to be loaded into
the debugging tool is determined according to the fol-
lowing mode:

the loading address of a data segment of the executable file
being the value of rw_base, when the value of ro_base
was set as default value, or as the actual loaded address
of the text segment, the value of a loaded offset address
of the text segment of the executable file is the actual
loaded address of the text segment minus the value of
ro_base;

so as to support debugging of the relocatable program.

#* #* #* #* #*

